transfinite arithmetic, cardinal arithmetic, ordinal arithmetic
prime field, p-adic integer, p-adic rational number, p-adic complex number
arithmetic geometry, function field analogy
Arithmetic geometry is a branch of algebraic geometry studying schemes (usually of finite type) over the spectrum Spec(Z) of the commutative ring of integers. More generally, algebraic geometry over non-algebraically closed fields or fields of positive characteristic is also referred to as βarithmetic algebraic geometryβ.
Since an affine variety in this context is given by solutions to Diophantine equations, this is also called Diophantine geometry.
An archetypical application of arithmetic geometry is the study of elliptic curves over the integers and the rational numbers.
For number theoretic purposes, i.e. in actual arithmetic; usually one complements this with some data βat the prime at infinityβ leading to a more modern notion of an arithmetic scheme (cf. Arakelov geometry).
The refinement to higher geometry is E-infinity geometry (spectral geometry).
Arithmetic geometry naturally has as base topos the topos over F1 in the sense of Borger's absolute geometry, which gives an essential geometric morphism of etale toposes
number fields (βfunction fields of curves over F1β) | function fields of curves over finite fields $\mathbb{F}_q$ (arithmetic curves) | Riemann surfaces/complex curves | |
---|---|---|---|
affine and projective line | |||
$\mathbb{Z}$ (integers) | $\mathbb{F}_q[z]$ (polynomials, function algebra on affine line $\mathbb{A}^1_{\mathbb{F}_q}$) | $\mathcal{O}_{\mathbb{C}}$ (holomorphic functions on complex plane) | |
$\mathbb{Q}$ (rational numbers) | $\mathbb{F}_q(z)$ (rational functions) | meromorphic functions on complex plane | |
$p$ (prime number/non-archimedean place) | $x \in \mathbb{F}_p$ | $x \in \mathbb{C}$ | |
$\infty$ (place at infinity) | $\infty$ | ||
$Spec(\mathbb{Z})$ (Spec(Z)) | $\mathbb{A}^1_{\mathbb{F}_q}$ (affine line) | complex plane | |
$Spec(\mathbb{Z}) \cup place_{\infty}$ | $\mathbb{P}_{\mathbb{F}_q}$ (projective line) | Riemann sphere | |
$\partial_p \coloneqq \frac{(-)^p - (-)}{p}$ (Fermat quotient) | $\frac{\partial}{\partial z}$ (coordinate derivation) | β | |
genus of the rational numbers = 0 | genus of the Riemann sphere = 0 | ||
formal neighbourhoods | |||
$\mathbb{Z}_p$ (p-adic integers) | $\mathbb{F}_q[ [ t -x ] ]$ (power series around $x$) | $\mathbb{C}[ [z-x] ]$ (holomorphic functions on formal disk around $x$) | |
$Spf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X$ (β$p$-arithmetic jet spaceβ of $X$ at $p$) | formal disks in $X$ | ||
$\mathbb{Q}_p$ (p-adic numbers) | $\mathbb{F}_q((z-x))$ (Laurent series around $x$) | $\mathbb{C}((z-x))$ (holomorphic functions on punctured formal disk around $x$) | |
$\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p$ (ring of adeles) | $\mathbb{A}_{\mathbb{F}_q((t))}$ ( adeles of function field ) | $\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x))$ (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks) | |
$\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}})$ (group of ideles) | $\mathbb{I}_{\mathbb{F}_q((t))}$ ( ideles of function field ) | $\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))$ | |
theta functions | |||
Jacobi theta function | |||
zeta functions | |||
Riemann zeta function | Goss zeta function | ||
branched covering curves | |||
$K$ a number field ($\mathbb{Q} \hookrightarrow K$ a possibly ramified finite dimensional field extension) | $K$ a function field of an algebraic curve $\Sigma$ over $\mathbb{F}_p$ | $K_\Sigma$ (sheaf of rational functions on complex curve $\Sigma$) | |
$\mathcal{O}_K$ (ring of integers) | $\mathcal{O}_{\Sigma}$ (structure sheaf) | ||
$Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z})$ (spectrum with archimedean places) | $\Sigma$ (arithmetic curve) | $\Sigma \to \mathbb{C}P^1$ (complex curve being branched cover of Riemann sphere) | |
$\frac{(-)^p - \Phi(-)}{p}$ (lift of Frobenius morphism/Lambda-ring structure) | $\frac{\partial}{\partial z}$ | β | |
genus of a number field | genus of an algebraic curve | genus of a surface | |
formal neighbourhoods | |||
$v$ prime ideal in ring of integers $\mathcal{O}_K$ | $x \in \Sigma$ | $x \in \Sigma$ | |
$K_v$ (formal completion at $v$) | $\mathbb{C}((z_x))$ (function algebra on punctured formal disk around $x$) | ||
$\mathcal{O}_{K_v}$ (ring of integers of formal completion) | $\mathbb{C}[ [ z_x ] ]$ (function algebra on formal disk around $x$) | ||
$\mathbb{A}_K$ (ring of adeles) | $\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x))$ (restricted product of function rings on all punctured formal disks around all points in $\Sigma$) | ||
$\mathcal{O}$ | $\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ]$ (function ring on all formal disks around all points in $\Sigma$) | ||
$\mathbb{I}_K = GL_1(\mathbb{A}_K)$ (group of ideles) | $\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))$ | ||
Galois theory | |||
Galois group | β | $\pi_1(\Sigma)$ fundamental group | |
Galois representation | β | flat connection (βlocal systemβ) on $\Sigma$ | |
class field theory | |||
class field theory | β | geometric class field theory | |
Hilbert reciprocity law | Artin reciprocity law | Weil reciprocity law | |
$GL_1(K)\backslash GL_1(\mathbb{A}_K)$ (idele class group) | β | ||
$GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})$ | β | $Bun_{GL_1}(\Sigma)$ (moduli stack of line bundles, by Weil uniformization theorem) | |
non-abelian class field theory and automorphy | |||
number field Langlands correspondence | function field Langlands correspondence | geometric Langlands correspondence | |
$GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O})$ (constant sheaves on this stack form unramified automorphic representations) | β | $Bun_{GL_n(\mathbb{C})}(\Sigma)$ (moduli stack of bundles on the curve $\Sigma$, by Weil uniformization theorem) | |
Tamagawa-Weil for number fields | Tamagawa-Weil for function fields | ||
theta functions | |||
Hecke theta function | functional determinant line bundle of Dirac operator/chiral Laplace operator on $\Sigma$ | ||
zeta functions | |||
Dedekind zeta function | Weil zeta function | zeta function of a Riemann surface/of the Laplace operator on $\Sigma$ | |
higher dimensional spaces | |||
zeta functions | Hasse-Weil zeta function |
An almost entirely self-contained introduction and (according to Werner Kleinert) βthe most comprehensive and detailed elaboration of the theory of algebraic schemes available in (text-)book form (after Grothendieckβs EGA)β:
Lecture notes include
Andrew Sutherland, Introduction to Arithmetic Geometry, 2013 (web)
C. SoulΓ©, D. Abramovich, J. F. Burnol, J. K. Kramer, Lectures on Arakelov Geometry, Cambridge Studies in Advanced Mathematics 33, 188 pp.
and with an eye towards anabelian geometry:
Further resources include
Wikipedia: glossary of arithmetic and Diophantine geometry, Arakelov geometry
Arakelov geometry preprint arxiv, list of links
conferences in arithmetic geometry, at Kiran Kedlayaβs wiki
Last revised on January 8, 2020 at 07:56:12. See the history of this page for a list of all contributions to it.